НАУЧНАЯ СТАТЬЯ

УДК 577.343

ОПРЕДЕЛЕНИЕ «ГОРЯЧИХ ТОЧЕК» ДЛЯ УЛУЧШЕНИЯ СОЗРЕВАНИЯ ФЛУОРЕСЦЕНТНОГО БЕЛКА moxSAASoti ПРИ 37 °C

Надежда Константиновна Марынич¹, Александр Павлович Савицкий^{1, 2}

¹ Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук

² Московский государственный университет имени М.В. Ломоносова, химический факультет

Автор, ответственный за переписку: Надежда Константиновна Марынич, marynich_n@mail.ru

Аннотация. Проведен поиск аминокислотных остатков, замена которых может способствовать более оптимальному созреванию флуоресцентного белка moxSAASoti при 37 °C. Для многих других флуоресцентных белков улучшение этой характеристики было получено случайно при множестве раундов случайного мутагенеза, однако нам удалось найти два положения – 74 и 125, которые, очевидно, влияют на процесс созревания moxSAASoti, что было проверено методом введения замен в эти положения путем сайт-направленного и сайт-насыщающего мутагенезов.

Ключевые слова: флуоресцентные белки, сайт-насыщающий мутагенез, созревание флуоресцентных белков

DOI: 10.55959/MSU0579-9384-2-2024-65-3-255-261

Список сокращений: GFP – green fluorescent protein, PCR, ПЦР – полимеразная цепная реакция, ИПТГ – изопропил-β-D-1-тиогалакто-пиранозид, ΦΠΦБ – фотопереключаемый флуоресцентный белок, ΦКФБ – фотоконвертируемый флуоресцентный белок.

Финансирование. Работа выполнена в рамках государственного задания.

Для цитирования: Марынич Н.К., Савицкий А.П. Определение «горячих точек» для улучшения созревания флуоресцентного белка moxSAASoti при 37 °С // Вестн. Моск. ун-та. Сер. 2. Химия. 2024. Т. 65. № 3. С. 255–261.

SCIENTIFIC REVIEW

DEFINITION OF "HOTSPOTS" TO IMPROVE THE MATURATION OF THE FLUORESCENT PROTEIN MOXSAASOTI AT 37 °C

Nadezhda K. Marynich¹, Alexander P. Savitsky^{1, 2}

¹ Institute of Biochemistry A.N. Bach, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences

² Moscow State University named after M.V. Lomonosov, Faculty of Chemistry

Corresponding author: Marynich Nadezhda Konstantinovna, marynich_n@mail.ru

Abstract: In the present work, we searched for amino acid residues, the replacement of which can contribute to more optimal maturation of the fluorescent protein moxSAASoti at 37 °C. For many other fluorescent proteins, an improvement in this characteristic has been obtained by chance through many rounds of random mutagenesis, however, we

were able to find two positions -74 and 121 – which obviously affect the maturation process of moxSAASoti, which was verified by introducing substitutions at these positions by the site directed and site-saturating mutagenesis.

Keywords: fluorescent proteins, site-saturating mutagenesis, maturation of fluorescent proteins

Abbreviations: GFP – green fluorescent proteins, PCR, PCR – polymerase chain reaction, IPTG – isopropyl- β -D-1-thiogalactopyranoside

Financial Support. The work was carried out within the framework of the state assignment.

For citation: Marynich N.K., Savitsky A.P. Determination of "hot spots" to improve the maturation of the fluorescent protein moxSAASoti at 37 °C // Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2024. T. 65. N^o 3. S. 255–261.

Генетически кодируемые флуоресцентные белки позволяют практически неинвазивно визуализировать динамические процессы в живых клетках и организмах[1-3]. Фотопревращающиеся флуоресцентные белки представляют собой подкласс флуоресцентных белков, которые меняют свои свойства флуоресцентной эмиссии в ответ на облучение светом определенных длин волн. Такие белки нашли широкое применение в качестве меток для методов микроскопии сверхвысокого разрешения, позволяя визуализировать структуры за пределами дифракционного барьера [4-6]. К таким белкам относятся фотоконвертируемые флуоресцентные белки (ФКФБ), способные менять длину волны эмиссии (сине-зеленые, оранжево-красные, и наиболее распространенные благодаря своей контрастности – зелено-красные ФКФБ [7–11]), фотопереключаемые белки (ФПФБ), способные переключаться между флуоресцентным и нефлуоресцентным состояниями [12-16]. Также существует малочисленная группа бифотохромных флуоресцентных белков, объединяющих в себе предыдущие два свойства, что позволяет использовать их в комбинации методов суперразрешающей микроскопии и получать более точные изображения [17]. Большинство бифотохромных белков получено путем мутагенеза ФКФБ [18, 19] и ФПФБ [20], однако уникальным примером такого белка является SAASoti. Уже в диком типе без введения замен он обладает одновременно несколькими свойствами фотопревращений: необратимой фотоконверсией [21], обратимым фотопереключением зеленой формы [22], а также для SAASoti продемонстрирована возможность фотопереключения красной формы при интенсивном фотооблучении зеленой формы белка перед фотоконверсией [23]. Для применения его в компартментах клетки с окислительными условиями была получена бесцистеиновая форма moxSAASoti [24].

В случае применения GFP-подобного белка для исследования клеток теплокровных животных in vivo большое значение имеет эффективное созревание при 37 °С. Созревание флуоресцентных белков – сложный процесс, объединяющий экспрессию, фолдинг белка и автокаталитическое формирование хромофора. Поскольку все известные на сегодняшний день GFP-подобные белки выделены из морских организмов (кораллов или медуз), для большинства из них нормальная физиологическая температура созревания находится около 20 °C. Оптимизация созревания GFP-подобных белков в клетках млекопитающих является важной задачей, однако рациональный поиск аминокислотных остатков представлен нечасто. В большинстве случаев это свойство приобретается белками в результате многих циклов случайного мутагенеза. В этой работе впервые были обнаружены «горячие точки», т.е. положения в аминокислотной последовательности, которые влияют на процесс созревания SAASoti при 37 °C.

Материалы и методы

Сайт-направленный и сайт-насыщающий мутагенезы были осуществлены методом «Overlap-extension PCR» [25] с использованием высокоточной ДНК-полимеразы Pfu. Праймеры для ПЦР составляли вручную, синтез проведен компанией «Евроген», Россия. Для сайтнасыщающего мутагенеза использовали вырожденные праймеры со случайным набором дезоксинуклеотидов в кодоне заменяемой аминокислоты, обозначенном как NNN, ПЦР проводили последовательно с каждой парой праймеров. Последовательности используемых праймеров представлены ниже:

moxSAASotiH74K fw	GTA	ACA	GAG				
		11011	0/10				
GOA I IO ICA AAI ACC CI	C	~ ~					
moxSAASotiH74K_rev	GAG (JGTAT	TTGA				
CAA TCC CTC TGT TAC							
moxSAASotiH74X_fw	GTA	ACA	GAG				
GGA TTG TCN NNT ACC CTC							
moxSAASotiH74X_rev	GAG	GGT	ANN				
NGA CAA TCC CTC TGT TAC							
moxSAASotiH125Y_fw	CAT C	CCA TG	T TTT T				
ACG GTA CAA ACT TTC							
moxSAASotiH125Y rev	GAAA	AGT TT	G TAC				
CGT AAA ACA TGG ATG							
moxSAASotiG78N fw:	TACC	CCT CCO	CAAC				
ATC CCC GAC TA							
moxSAASotiG78N rev:	TAG	TCG	GGG				
ATG TTG GGA GGG TA							
moxSAASotiI15K_fw:	TGG A	AT TA	AAGT				
TTC ACA TGG ATG GCA A							
moxSAASotiI15K_rev:	TT G	CC ATC	C CAT				
GTG AAA CTT TAA TTC CA							

ДНК с заменами клонировали в вектор pET22b и трансформировали в клетки *E. coli* BL21(DE3). Трансформированные клетки высевали на агаризованную LB-среду с селективным антибиотиком (ампициллин в конечной концентрации 1 мг/л) и ИПТГ в конечной концентрации 100 мкМ, выращивали в течение ночи (16 ч).

Колонии анализировали на испускание флуоресценции при длине волны 520 нм на установке на базе микроскопа Olympus BX-43. 4 Thorlabs LEDs были коллимированы ахроматическими конденсорными линзами Thorlabs ACL2520-А и объединены с тремя дихроическими зеркалами Thorlabs DMLP425R, DMLP490R и Edmund Optics #67-078 с отсекающими фильтрами на длине волны возбуждения 458 нм. Спектральные полосы пропускали полосовым фильтром ЕТ470/24т. Была использована схема Köhler для получения более гомогенного пучка света после объектива микроскопа. Пучок света после коллиматорных линз фокусировался на задней плоскости объектива ахроматическими линзами (Thorlabs AC254-125-А). Затем ахроматический свет отражался разделителем светового луча 50/50 на объектив. Флуоресцентное изображение проецировалось на ССД-камеру после разделителя светового луча через трубчатые линзы после фильтров Chroma 500LP и ZET562NF Notch. Камеру использовали для фокусировки и ориентирования образца. При этом ахроматический объектив фокусировал изображение на входной щели спектрометра «Avesta ASP-75» через второй разделитель светового луча 70/30. Светодиоды управлялись с помощью драйвера Thorlabs LEDD1B и собственноручно

спроектированного USB DAC с самописным программным обеспечением Python.

Результаты и их обсуждение

При выравнивании последовательности SAASoti и других фотопревращающихся белков можно видеть, что у большинства белков в положениях 15 и 74 стоят лизины, что может свидетельствовать о высокой консервативности остатка в этом положении (рис. 1, А). Таким образом, были индивидуально введены замены 115К и H74K, G78N в последовательность moxSAASoti.

Анализ интенсивности флуоресценции колоний на 520 нм показал, что флуоресценция возросла только для варианта с заменой Н74К. Это положение было выбрано как перспективное. Был проведен сайт-насыщающий мутагенез по положению 74. Получено 62 колонии, флуоресценция наблюдалась у 16 (рис. 2, А). Наиболее высокая интенсивность флуоресценции характерна для клона 12, она более чем в 2 раза превышает интенсивность для варианта Н74К. Секвенирование ДНК показало, что этот клон содержит замену H74A.

Из полученных данных можно видеть, что положение 74 влияет на процесс созревания moxSAASoti, возможно, участвуя в электростатических взаимодействиях при фолдинге.

В работе [26] были проведены аналогичные исследования, направленные именно на улучшение созревания при 37°С фотоконвертируемого белка mEosFP[11], в результате была получена форма mEos2[26]. Белок EosFP имеет высокую степень идентичности по первичной последовательности с moxSAASoti (53%). На его основе с помощью одной замены удалось также получить бифотохромный белок, что также свидетельствует о возможной схожести фотохимических свойств и строении β – бочонка. Для mEos2, в отличие от SAASoti, результативными оказались три замены: N15K, E74K и H78N (нумерация здесь и далее по SAASoti).

В работе [26] была также обнаружена «счастливая», как назвали ее авторы, замена, приведшая к улучшению созревания белка mEos2 – H125Y. В нашей работе проверено, является ли это положение «горячей точкой» и у moxSAASoti, учитывая, что у moxSAASoti, так же как у EosFP, в этом положении находится гистидин. Была проанализирована интенсивность флуоресценции белка в клетках. Для варианта moxSAASoti H125Y характерно многократное возрастание флуоресценции

moxSAASoti PS-CFP PSmOrange Dendra2 Dronpa mEos2	1 MALSK -MSKGA MVSKGEENNM MNTPGI M	10 QYIPDDMEII ELFTGIVPII AIIKEFMREM NLIKEDMRVM SVIKPDMKIM SAIKPDMKIM	20 THMDGNVNG TELNGDVNG VRMEG <u>T</u> VNG VHMEG <u>N</u> VNG CRMEG <u>A</u> VNG CRMEG <u>N</u> VNG	30 HYFTIVATGKA HKFSVSGEGEG HEFEIEGEGEGG HAFVIEGEGKG HPFAIEGVGLG HHFVIDGDGTG	40 KPYEGKQNLI DATYGKLTLI RPYEGFQTAI KPYEGTQTAI KPFEGKQSMI	50 KATVIKGAPLP KFICTT-GKLP KLKVIKGGPLP NLTVKEGAPLP DLKVKEGGPLP DLEVKEGGPLP
moxSAASoti PS-CFP PSmOrange Dendra2 Dronpa mEos2	60 FSTDILSTVM VPWPTLVATL FAWDILSPLF FSYDILTTAV FAYDILTTVF FAFDILTTAF	70 <u>HYG</u> NRGIVH <u>SYG</u> VQCFSR <u>TYG</u> SKAYVK <u>HYG</u> NRVFIK <u>CYG</u> NRVFAK <u>HYG</u> NRVFAK	80 (PPGIPDY) (PDHMKQHDF) (PDDIPDY) (PDDIPDY) (PDNIQDY) (PDNIQDY)	90 FKQSFPEGYSW FKSAMPEGYIQ FKLSFPEGFKW FKQSFPEGYSW FKQSFPEGYSW FKQSFPKGYSW	100 ERTFAFEDG ERTIFFEDD ERVMNYEDG ERTMTFEDK ERSMNYEDG ERSLTFEDG	110 GFWTVSADIKL GNYKSRAEVKF GVVTVTQDSSL GICTIRSDISL GICNATNDITL GICIARNDITM
moxSAASoti PS-CFP PSmOrange Dendra2 Dronpa mEos2	120 KDNTEIHTSM EGDTEVSRIE ODGEEIYKVK EGDCEFONVR DGDCYIYEIR EGDTEYNKVR	130 FHGTNFPADG LIGTDFKEDG MRGTNFPSDG FKGTNFPPNG FDGVNFPANG FYGTNFPANG	140 FPVMQRKTIQI NILGNKM-E FVMQKKTLKI FVMQKKTLKI FVMQKRTVKI FVMQKKTLKI	150 WEKSIEKMIVS WNYNAINVYIM WEASSERMYPE WEPSIEKLHVR WEPSIEKLYVR WEPSIEKMYVR	160 DGIVKGDITI TDKARNGIK DGALKGEIRI DGLLVGNIN DGVLKGDVNI DGVLTGDIHI	MFI L LEG VNFKVRHNIKD MRI K LKD MAI L LEG MAI S LEG MAI L LEG
moxSAASoti PS-CFP PSmOrange Dendra2 Dronpa mEos2	170 1 GGKY-RAQFH GSVQLADHYQ GGHY-TSEVK GGHY-LCDFK GGHY-RCDFK NAHY-RCDFR	80 TSYKAK-KVV QNTPIGDGPV TTYKAK-KVV TTYKAK-KVV TTYKAK-KVV TTYKAKEKGV	190 TEMPQSHYVE TLPDNHYLS TQLPGAYIVG TQLPDAHFVD TQLPDYHFVD TKLPGYHFVD	200 SIERTNDD QSALSKDPNE KLDITSHNED RIEILGNDSD HIEIKSHDKD CIEILSHDKD	210 GTQFELNEH KRDHMIYLE YTIVEQYER YNKVKLYEH YSNVNLHEH YNKVKLYEH	220 AVARL <mark>NEI</mark> FVTAAAITHGM AEGRHS-TGGM AVARYSPLPSQ AEAHSE-LPRQ AVAHS <mark>G</mark> -LPDN

Б

Рис. 1. Выравнивание последовательностей moxSAASoti и других фототрансформируемых и бифотохромных белков. Серым выделением обозначены замены в PS-CFP, подчеркиванием – PSmOramge, квадратной рамкой – в mEos2, светло-серым шрифтом в mIrisFP, белым текстом на черном фоне – Dronpa, жирным шрифтом – Dendra2. После выравнивания приведены значения процента идентичности последовательностей выбранных белков с moxSAASoti, все белки, кроме PS-CFP, произошли из кораллов. Б – трехмерная модель moxSAASoti с обозначением аминокислотных остатков, которые повлияли на созревание в других белках. Сфероидными моделями обозначены остатки, находящиеся в близком контакте. Темно-серым – остатки, замененные в moxSAASoti, светло-серым – в других белках

А

клеток по сравнению с предыдущими вариантами (рис. 2, Б). Очевидно, что положение 125 тоже влияет на созревание moxSAASoti. Таким образом, для moxSAASoti были обнаружены два, общие с mEos2, положения (74 и 125), играющие важную роль в процессе созревания белка.

Для многих белков в настоящее время получены формы, стабильно сворачивающиеся и созревающие при температуре тела млекопитающих. Выяснение аминокислотных остатков или даже областей, которые могли бы регулировать это свойство все еще остается нетривиальной задачей. Часто эти свойства возникают в совокупности с другими свойствами. Так, например, сине-зеленый ФКФБ PS-CFP был получен из мономерного нефлуоресцирующего белка aceGFP (*Aequorea coerulescens*) с помощью комбинации сайт-насыщающего мутагенеза и случайного мутагенеза с результирующими девятью заменами: T63A, N120S, H148T, K158R, I164V, E168K, F213L, G214E и K227Q. Полученный белок эффективно созревает в клетках млекопитающих, но выяснить, какие именно замены оказали влияние на процесс созревания, пока не удалось [15]. Однако известно, что PS-CFP является потомком белка, выделенного из медузы вида *Aequoria*. Все флуоресцентные белки можно разделить на две многочисленные группы: 1) выделенные из медуз, 2) выделенные из кораллов. Эти две группы сходны по третичной структуре, но значительно различают-

Рис. 2. Интенсивности флуоресценции колоний, содержащих клоны (λ = 520 нм)

ся по первичной. Это можно видеть при анализе первичных последовательностей представителей разных групп. SAASoti выделен из коралла, поэтому идентичность его последовательности с ФКФБ, выделенными из медуз, составляет лишь 20%, в то время как идентичность с ФКФБ, выделенными из кораллов, составляет 50% (PS-CFP – 22%, PSmOrange – 47%, Dendra2 – 55%, Dronpa – 52%, mEos2 – 53%). Очевидно, наибольший интерес представляет сравнение именно со второй группой белков, в особенности с фотопревращающимися белками, как близкими, в том числе и по сложности фотохимических реакций, протекающих в окружении хромофора.

Для анализа были выбраны ФКФБ, ФПФБ, а также их бифотохромные варианты с известным числом замен, которые улучшают их созревание при 37 °С.

1. Оранжево-красный ФКФБ PSmOrange был получен из оранжевого флуоресцентного белка mOrange девятью раундами случайного мутагенеза по всей последовательности с результирующими шестью заменами (S21T, Q64L, F99Y, L124M, K162R, P186S), которые привели не только к получению ФКФБ с повышенной яркостью и фотостабильностью, но и увеличили скорость созревания этого белка при 37 °C в 1,6 раза [27].

2. Фотопереключаемый флуоресцентный белок (ФПФБ) Dronpa [28] был получен из зеленоватого ФБ 22G путем случайного мутагенеза с результирующими заменами I106N, F118Y, L166S, R198H, N209S, G220E, что привело не только к появлению свойства обратимого фотопереключения, но также дало стабильное созревание при 37 °C. Его бифотохромные варианты pcDronpa (C66H-N106I-E220G) и pcDronpa2 (C66H-N106I-

СПИСОК ЛИТЕРАТУРЫ

- Solovyev I.D., Maloshenok L.G., Savitsky A.P. // Materials. MDPI, 2022. Vol. 15. N 14 (DOI: 10.3390/ ma15144962).
- Zherdeva V.V., Kazachkina N.I., Shcheslavskiy V.I., Savitsky A.P. // J. Biomed. Opt. 2018. Vol. 23. N 03. P. 035002 (DOI: 10.1117/1.JBO.23.3.035002).
- Welling M., Mohr M.A., Ponti A., Sabater L.R., Boni A., Kawamura Y.K., Liberali P., Peters A.H.F.M., Pelczar P., Pantazis P. // eLife, 2019. P. 1 (DOI: 10.7554/ eLife.44491).
- Subach F.V., Patterson G.H., Renz M., Lippincott-Schwartz J., Verkhusha V.V. // J. Am. Chem. Soc., 2010. Vol. 132. N 18. P. 6481 (DOI: 10.1021/ja100906g).
- Subach F.V., Patterson G.H., Manley S., Gillette J.M., Lippincott-Schwartz J., Verkhusha V.V. // Nat. Methods. 2009. Vol. 6. N 2. P. 153 (DOI: 10.1038/nmeth.1298).
- 6. Gunewardene M.S., Subach F.V., Gould T.J., Penon-

Y120N-E220G) также эффективно созревают при 37 °C, хотя при их получении произошли обратные замены в положениях 106 и 220 [20].

3. Зелено-красный ФКФБ Dendra эффективно созревает при 37 °С благодаря единственной замене Y99F, полученной методом случайного мутагенеза [29]. Интересно, что эта замена является обратной замене F99Y для PSmOrange, так что возможно замена F99Y повлияла на какой-то другой параметр, а не на созревание.

4. Бифотохромный белок mIrisFP, отличается от мономерного mEosFP четырьмя введенными заменами – A73V, F177S, K149I и Y193A. При скрининге было обнаружено, что замена A73V устраняет недостающую термотолерантность; вариант mEosFPthermo и mIrisFP демонстрирует превосходную экспрессию при 37 °C [17].

При расположении всех вышеописанных положений на модели SAASoti можно выделить некоторые группы вокруг положений, замены в которых повлияли на созревание SAASoti (рис. 1, Б). Так, в тесном контакте с положением 125 находятся также положения 21 и 124, обнаруженные у PSmOrange и 106, обнаруженное у Dronpa. Это свидетельствует о взаимодействии аминокислотных остатков в определенных областях бета-бочонка, отвечающих за фолдинг и созревание при 37 °С, причем каждая из замен изменяет взаимодействие между аминокислотными остатками. Вблизи от положения 74 находится целая группа: 73 от mIrisFP, 148, 214, 215 от PS-CFP и 197 от Dronpa. Можно предположить, что при подборе замены необходимо также анализировать область контактов аминокислотного остатка и сравнивать с контактами в «успешных» белках подобного типа.

cello G.P., Gudheti M.V., Verkhusha V.V., Hess S.T. // Biophys J. 2011. Vol. 101. N 6. P. 1522 (DOI: 10.1016/j. bpj.2011.07.049).

- Nienhaus K., Nienhaus G.U., Wiedenmann J., Nar H. // P. Natl. Acad. Sci. USA. 2005. Vol. 102. N 26. P. 9156 (DOI: 10.1073/pnas.0501874102).
- Ando R., Hama H., Yamamoto-Hino M., Mizuo H., Miyawaki A. // P. Natl. Acad. Sci. USA. 2002. Vol. 99. N 20. P. 12651 (DOI: 10.1073/pnas.202320599).
- Pletneva N.V., Pletnev S., Pakhomov A.A., Chertkova R.V., Martynov V.I., Muslinkina L., Dauter Z., Pletnev V.Z. // Acta Crystallogr. D. Struct. Biol. 2016. Vol. 72. N 8. P. 922 (DOI: 10.1107/s205979831601038x).
- Habuchi S., Tsutsui H., Kochaniak A.B., Miyawaki A., van Oijen A.M. // PLoS One. 2008. Vol. 3. N 12 (DOI: 10.1371/journal.pone.0003944).
- 11. Wiedenmann J., Ivanchenko S., Oswald F., Schmitt F.,

Röcker C., Salih A., Spindler K.-D., Nienhaus G.U. // P. Natl. Acad. Sci. USA. 2004. Vol. 101. N 45. P. 15905. (DOI: 10.1073/PNAS.04036681012004).

- Stiel A.C., Trowitzsch S., Weber G., Andresen M., Eggeling C., Hell S.W., Jakobs S., Wahl M.C. // Biochem. J. 2007. Vol. 402. N 1. P. 35 (DOI: 10.1042/ BJ20061401).
- Andresen M., Wahl M.C., Stiel A.C., Schä Fer L.V., Trowitzsch S., Weber G., Eggeling C., Grubmü Ller H., Hell S.W., Jakobs S. // Nat. Biotechnol. 2008. Vol. 26. P. 1035 (DOI: 10.1038/nbt.1493).
- Pennacchietti F., Serebrovskaya E.O., Faro A.R., Shemyakina I.I., Bozhanova N.G., Kotlobay A.A., Gurskaya N.G., Bodén A., Dreier J., Chudakov D.M., Lukyanov K.A., Verkhusha V.V., Mishin A.S., Testa I. // Nat. Methods. 2018. Vol. 15. N 8. P. 601 (DOI: 10.1038/s41592-018-0052-9).
- Chudakov D.M., Verkhusha V.V., Staroverov D.B., Souslova E.A., Lukyanov S., Lukyanov K.A. // Nat. Biotechnol. 2004. Vol. 22. N 11. P. 1435 (DOI: 10.1038/nbt1025).
- Zhou X.X., Lin M.Z. // Curr. Opin. Chem. Biol. 2013. Vol. 17. № 4 P. 682 (DOI: 10.1016/j. cbpa.2013.05.031).
- Wiedenmann J., Gayda S., Adam V., Oswald F., Nienhaus K., Bourgeois D., Nienhaus G.U. // J. Biophotonics. 2011. Vol. 4. N 6. P. 377 (DOI: 10.1002/jbio.201000122).
- Adam V., Lelimousin M., Boehme S., Desfonds G., Nienhaus K., Field M.J., Wiedenmann J., McSweeney S., Nienhaus G.U., Bourgeois D. // P. Natl. Acad. Sci. USA. 2008. Vol. 105. N 47. P. 18343 (DOI: 10.1073/ pnas.0805949105).
- Adam V., Moeyaert B., David C.C., Mizuno H., Lelimousin M., Dedecker P., Ando R., Miyawaki A., Michiels J., Engelborghs Y., Hofkens J. // Chem. Biol.

2011. Vol. 18. N 10. P. 1241 (DOI: 10.1016/j.chembiol.2011.08.007).

- Moeyaert B., Nguyen Bich N., De Zitter E., Rocha S., Clays K., Mizuno H., Van Meervelt L., Hofkens J., Dedecker P. // ACS Nano. 2014. Vol. 8. N 2. P. 1664 (DOI: 10.1021/nn4060144).
- Lapshin G., Salih A., Kolosov P., Golovkina M., Zavorotnyi Y., Ivashina T., Vinokurov L., Bagratashvili V., Savitsky A. // J. Innov. Opt. Health. Sci. 2015. Vol. 8. N 4. P. 1550028 (DOI: 10.1142/S1793545815500285).
- Solovyev I.D., Gavshina A.V., Savitsky A.P. // J. Biomed. Photonics. Eng. 2017. Vol. 3. N 4. P. 040303 (DOI: 10.18287/jbpe17.03.040303).
- Solovyev I.D., Gavshina A.V., Savitsky A.P. // Int. J. Mol. Sci. 2019. Vol. 20. N 14. P. 19 (DOI: 10.3390/ ijms20143399).
- Marynich N.K., Khrenova M.G., Gavshina A.V., Solovyev I.D., Savitsky A.P. // Sci. Rep. 2022. Vol. 12. N 1. P. 7862 (DOI: 10.1038/s41598-022-11249-x).
- Higuchi R., Krummell B., Saiki R.K. // Nucleic Acids Res. 1988. Vol. 16. N 15. P. 73577 (DOI: 10.1093/ nar/16.15.7351).
- McKinney S.A., Murphy C.S., Hazelwood K.L., Davidson M.W., Looger L.L. // Nat. Methods. 2009. Vol. 6. N 2. P. 1313 (DOI: 10.1038/nmeth.1296).
- Subach O.M., Patterson G.H., Ting L.M., Wang Y., Condeelis J.S., Verkhusha V.V. // Nat. Methods. 2011. Vol. 8. N 9. P. 771 (DOI: 10.1038/nmeth.1664).
- Ando R., Mizuno H., Miyawaki A. // Science. 2004. Vol. 306. N 5700. P. 1370 (DOI: 10.1126/science.1102506).
- 29. Gurskaya N.G., Verkhusha V.V., Shcheglov A.S., Staroverov D.B., Chepurnykh T.V., Fradkov A.F., Lukyanov S., Lukyanov K.A. // Nat. Biotechnol. 2006. Vol. 24. N 4. P. 461 (DOI: 10.1038/nbt1191).

Информация об авторах

Надежда Константиновна Марынич – мл. науч. сотр. лаборатории физической биохимии Института биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук (marynich_n@mail.ru);

Александр Павлович Савицкий – доцент химического факультета МГУ имени М.В. Ломоносова; зав. лабораторией физической биохимии Института биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук; докт. хим. наук, профессор (apsavitsky@inbi.ras.ru).

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических стандартов

В данной работе отсутствуют исследования человека и животных.

Статья поступила в редакцию 30.10.2023; одобрена после рецензирования 12.11.2023; принята к публикации 14.11.2023