НАУЧНЫЙ ОБЗОР

УДК 539.193

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ВОЗМОЖНОСТЕЙ МЕТОДОВ МОЛЕКУЛЯРНОЙ СПЕКТРОСКОПИИ ПРИ ИЗУЧЕНИИ ВНУТРЕННЕГО ВРАЩЕНИЯ

Лидия Александровна Королева¹, Александра Валерьевна Королева²

¹ Московский государственный университет имени М.В. Ломоносова, химический факультет

² Московский государственный университет имени М.В. Ломоносова, физический факультет

Автор, ответственный за переписку: Лидия Александровна Королева, koroleva. msu@rambler.ru

Аннотация. Проведено сравнение методов, применяемых при изучении внутреннего вращения (BB) в основном (S_0) и возбужденном (S_1) электронных состояниях в ряду α,β -ненасыщенных карбонильных соединений: $R_4R_3C = CR_2 - COR_1$, где R₁ = H, R₁ = F, R₁ = CI; R₂ = H, R₂ = CH₃, R₂ = F; R₃ = R₄ = H = CH₃. Выявлены различия в значениях (0-v)-переходов крутильного колебания для s-mpahc- и s-цисизомеров для некоторых исследуемых соединений в методах анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектров поглощения высокого разрешения и ИК-Фурье-спектров, применяемых при изучении ВВ в S₀-электронном состоянии. Установлены причины таких различий. Показано, что в состоянии So более надежное определение значений (0-v)-переходов крутильного колебания обеих изомерных форм молекул получено в методе анализа колебательной структуры $n-\pi^*$ перехода УФ-спектров поглощения. Предложено новое отнесение для переходов крутильного колебания s-mpanc-изомера акролеина в спектре метода полостной кольцевой спектроскопии (CRDS) в возбужденном S₁-состоянии. Сделан вывод: метод анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектров поглощения высокого разрешения паров исследуемых соединений является более надежным и точным при изучении ВВ в обоих электронных состояниях.

Ключевые слова: v – частота крутильного колебания, v – колебательное квантовое число, ω – волновое число, таблица Деландра (ТД), основное и возбужденное электронные состояния

DOI: 10.55959/MSU0579-9384-2-2023-64-6-507-525

Финансирование. Работа выполнена в рамках государственного задания № 121031300176-3.

Для цитирования. Королева Л.А., Королева А.В. Сравнительный анализ возможностей методов молекулярной спектроскопии при изучении внутреннего вращения // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 6. С. 507–525.

[©] Королева Л.А., Королева А.В., 2023

SCIENTIFIC REVIEW

COMPARATIVE ANALYSIS OF THE CAPABILITIES OF MOLECULAR SPECTROSCOPY METHODS IN STUDYING INTERNAL ROTATION

Lidiya A. Koroleva¹, Alexandra V. Koroleva²

¹ Lomonosov Moscow State University, Faculty of Chemistry ² Lomonosov Moscow State University, Faculty of Physics

Corresponding author: Lidiya A. Koroleva, koroleva.msu@rambler.ru

Abstract: In the review the comparison of the methods used to study internal rotation (IR) in the ground (S_0) and excited (S_1) electronic states in the series of α,β -unsaturated carbonyl compounds: $R_4R_3C = CR_2$ -COR₁, where $R_1 = H$, $R_1 = F$, $R_1 = CI; R_2 = H, R_2 = CH_3, R_2 = F; R_3 = R_4 = H = CH_3$, is made. Differences in the values of (0-v)-transitions of torsional vibration for s-trans- and s-cis-isomers for some studied compounds are revealed in the methods of analysis of the vibrational structure of $n-\pi^*$ -transition of high-resolution UV absorption spectra and IR-Fourier-spectra, used in the study (IR) in (S_0) electronic state. The reasons for such differences are established. It is shown that in the (S_0) state a more reliable determination of the values of (0-v)-transitions of torsional vibration of both isomeric forms of molecules was obtained in the method of analysis of the vibrational structure of $n-\pi^*$ -transition of UV absorption spectra. A new assignment for transitions of torsional vibration of the s-trans isomer of acrolein in the spectrum of the Cavity Ringdown Spectroscopy (CRDS) method in the excited (S_1) state is proposed. It is concluded that the method of analyzing the vibrational structure of $n-\pi^*$ -transition of high-resolution UV absorption spectra of vapors of the studied compounds is more reliable and accurate when studying (IR) in both electronic states.

Keywords: v – frequency of torsional vibration, v – vibrational quantum number, ω – wave number, Deslandres table (DT), the ground and excited electronic states

Financial Support. The work was carried out within the framework of the state task No. 121031300176-3.

For citation: Koroleva L.A., Koroleva A.V. Comparative analysis of the capabilities of molecular spectroscopy methods in studying internal rotation // Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2023. T. 64. № 6. S. 507–525.

Одним из интересных и важных случаев внутреннего вращения (ВВ) является вращение вокруг одинарной С-С-связи, находящейся в сопряжении с двумя двойными связями типа =С-С=. Систематическим изучением внутреннего вращения в ряду α,β-ненасыщенных карбонильных соединений с общей формулой R₄R₃C=CR₂-COR₁, где R₁ = H, R₁ = F, $R_1 = CI; R_2 = H, R_2 = CH_3, R_2 = F; R_3 = R_4 = H,$ R₃ = R₄ = CH₃, мы занимаемся уже несколько десятилетий [1–10]. В этих соединениях наблюдается внутреннее вращение вокруг С-С-связи, находящейся в сопряжении с двумя двойными связями С=С и С=О. В зависимости от поставленной задачи при изучении внутреннего вращения используются различные методы [11]. Для всех исследуемых соединений в газовой фазе в

микроволновых и ИК-спектрах установлено или принято, что все они представляют равновесную смесь двух плоских s-mpanc- и s-цис-изомеров. Микроволновой спектр s-mpanc-изомера молекулы акролеина (CH₂=CH-COH) в газе был исследован в работе [12], а спектр s-цис-изомера этой молекулы – в работах [13, 14]. Исследовать s-цис-изомер акролеина непросто, так как разность энергии (ΔH) между изомерами этой молекулы при комнатной температуре очень велика $(\Delta H = 600 \text{ см}^{-1})$ [15], а концентрация этого изомера мала (4%). Для метакролеина (CH₂=C(CH₂)-СОН) авторы работы [16] наблюдали в микроволновом спектре вращательные переходы только для s-mpaнc-изомера и даже сделали вывод, что s-*цис*-изомера не существует при комнатной температуре. Однако в ИК-Фурье-спектре в дальней области были найдены для s-цис-изомера частота крутильного колебания и ее обертон [17]. Для цисизомера метакролеина, по аналогии со строением этого изомера для всех исследуемых соединений, авторы приняли плоское строение. Исследование микроволновых спектров молекул акрилоилфторида (CH₂=CH-COF) [18] и метакрилоилфторида (CH₂=C(CH₃)-COF) [19] показало, что обе молекулы состоят из смеси плоских s-mpanc- и s-цисизомеров с более устойчивым s-mpanc-изомером. Для акрилоилхлорида (CH₂=CH-COCI) микроволновой спектр был изучен также для обеих изомерных форм молекулы. Однако расшифровать этот спектр удалось только для более устойчивого s-mpanc-изомера. Для цисизомера этой молекулы принято плоское строение [20]. Микроволновые спектры для молекул метакрилоилхлорида (CH₂=C(CH₃)-COCI) и 2-фторакрилоилфторида (CH₂=CF-COF) не изучались. Для метакрилоилхлорида принято плоское строение обеих изомерных форм. Однако для молекулы 2-фторакрилоилфторида авторы работы [21] по ИК-спектрам доказали плоское строение s-mpanc- и s-цис-изомеров с более устойчивым s-mpanc-изомером. На рис. 1 в качестве примера представлена равновесная смесь s-mpaнс- и s-цис-изомеров молекулы метакрилоилфторида. Аналогичные рисунки равновесных смесей можно представить для s-mpanc- и s-цисизомеров приведенных выше молекул.

Разность энергии изомеров, найденная для акрилоилфторида из микроволнового спектра [18], очень мала: 90 ± 100 кал/моль (31 ± 35 см⁻¹), что совпадает со значением ΔH , представленном нами в работе [2] (40 ± 20 см⁻¹) и указывает на приблизительно равное процентное содержание в равновесной смеси *s-mpahc-* и *s-цис-*изомеров.

Для изомеров метакрилоилфторида ΔH составляет 320 ± 30см⁻¹ [4, 6]. Разности энергии s-*транс*- и s-*цис*-изомеров акрилоилхлорида, метакрилоилхлорида и 2-фторакрилоилфторида приведены соответственно в работах [22, 23, 21]. Небольшие значения разности энергии в молекулах исследуемых соединений позволяют сделать вывод, что в их спектрах поглощения будут проявляться полосы поглощения обеих изомерных форм исследуемых молекул (концентрация *цис*-изомера не менее 30%).

При изучении внутреннего вращения исследуемых соединений ряда α,β-ненасыщенных карбонильных соединений, приведенных выше, используют различные экспериментальные методы: микроволновые спектры, ИК-Фурьеспектры в дальней области, анализ колебательной структуры УФ-спектров поглощения высокого разрешения в газе и получение спектров методом CRDS (Cavity Ringdown Spectroscopy), в котором используется сверхзвуковая струя исследуемого соединения. С помощью этих методов можно получить для исследуемых молекул одни из главных характеристик ВВ: частоты изомерных форм крутильного колебания и значения частот (0-v)-переходов (уровней энергии) этого колебания до высоких значений колебательного квантового числа v в основном (S_0) , возбужденном (S_1) или обоих электронных состояниях.

Нами используется метод анализа колебательной структуры полос $n-\pi^*$ -перехода УФ-спектров поглощения высокого разрешения исследуемых соединений в газовой фазе. Достоинство применяемого нами метода заключается в его информативности, так как колебательная структура паров многих исследуемых соединений ряда

Рис. 1. Равновесная смесь s-mpanc- и s-цис-изомеров молекулы метакрилоилфторида

Рис. 2. Схема переходов между уровнями энергии крутильного колебания основного электронного (S₀) и возбужденного (S₁) состояния $(v_{\tau}''=v_{\text{кp.}}''=\omega_{00}-\omega_{10}; v_{\tau}'=v_{\text{кp.}}'=\omega_{01}-\omega_{00})$

α,β-ненасыщенных карбонильных соединений содержит сотню и более полос поглощения (акрилоилфторид [9], метакрилоилфторид [24], метакрилоилхлорид [23]). Большинство из этих полос поглощения для каждого изучаемого соединения относятся к определенному переходу между уровнями энергии крутильного колебания s-mpaнс- или s-цис-изомера этого соединения из основного (S₀) электронного состояния в возбужденное (S₁). Поэтому в применяемом нами методе для каждого изомера исследуемой молекулы ряда α,β-ненасыщенных карбонильных соединений мы определяем частоты крутильного колебания и значения частот (0-v)-переходов этого колебания не только в основном (S₀), но и в возбужденном (S₁) электронных состояниях до высоких значений колебательного квантового числа v (рис. 2). Это еще одно достоинство применяемого нами метода и его отличие от ИК-Фурье-спектроскопии в дальней ИК-области, в которой наблюдаются переходы крутильного колебания каждого изомера исследуемой молекулы только в основном (S₀) электронном состоянии. Наблюдаемый в УФ-спектре переход соответствует переходу $(S_0) \rightarrow (S_1)$ и имеет симметрию ${}^{1}A' - {}^{1}A''$.

По полученным значениям частот (0-v)переходов крутильного колебания можно построить в одномерной модели потенциальные функции внутреннего вращения (ПФВВ) вида:

$$V(\varphi) = \frac{1}{2} \Sigma V_n (1 - \cos n \varphi), \qquad (1)$$

где ф – угол поворота одной группы атомов («волчка») относительно другой («остова»).

Из анализа колебательной структуры $n-\pi^*$ перехода УФ-спектра высокого разрешения мы определяем как для s-*mpaнc*-, так и для s-*цис*-изомеров исследуемых молекул не только частоты крутильного колебания и значения (0-v)-переходов этого колебания в электронных состояниях S₀ и S₁, но и 0-0-полосы, а также другие фундаментальные колебательные частоты в состояниях S₀ и S₁.

Выражение для волновых чисел всех возможных колебательных переходов этого электронного перехода (т.е. системы полос) представлено в работе [26].

Разработанный в нашей группе комплекс программ сокращает время расшифровки колебательной структуры $n-\pi^*$ -перехода УФ-спектра и делает ее более надежной. По программе NONIUS для каждой исследуемой молекулы из всех полос ее колебательной структуры находим прогрессии и секвенции по наиболее повторяющимся интервалам, которые являются строчками, столбцами и диагональными элементами многочисленных таблиц Деландра (ТД) для s-*транс*- или s-*цис*-изомеров [7-9, 23, 24, 27, 28]. По программе **v**₀₀ определяются в случае каждой построенной ТД для s-mpanc- или s-цис-изомеров исследуемых соединений значения частот крутильного колебания и (0-v)-переходов этого колебания до высоких значений v, гармонические частоты ω_{ρ} и коэффициенты ангармоничности – *x*₁₁. Так как для всех указанных выше соединений ряда α,β-ненасыщенных карбонильных соединений, кроме акролеина, было изучено внутреннее вращение относительно С-С-связи методом анализа *n*-π*-перехода УФ-спектров высокого разрешения в газе и методом анализа длинноволновых ИК-Фурье-спектров тоже в газе, мы можем сравнить результаты анализа этих методов спектроскопии в основном (S_0) электронном состоянии. Как оказалось, в этих двух методах совпали значения частот крутильного колебания и (0-v)-переходов этого колебания для обеих изомерных форм молекул акрилоилфторида [10, 26], 2-фторакрилоилфторида [27, 21] и метакролеина [28, 17]. Частоты переходов крутильного

колебания s-mpanc- и s-uuc-изомеров акрилоилфторида в основном (S_0) электронном состоянии, полученные из УФ-спектров поглощения высокого разрешения и ИК-Фурье-спектров в дальней области, приведены в табл. 1, 2. Однако не для всех исследуемых соединений ряда α,βненасыщенных карбонильных соединений методами анализа колебательной структуры *n*-π*перехода УФ-спектров поглощения высокого разрешения и анализа ИК-спектров в дальней области мы получили совпадающие значения частот s-mpanc- и s-цис-изомеров в электронном состоянии S₀. Сильное различие в значениях частот для этих изомеров наблюдается для молекул акрилоилхлорида, метакрилоилхлорида и метакрилоилфторида. Остановимся подробнее на различиях значений частот крутильного колебания и (0-v)-переходов этого колебания для каждого из этих соединений в сравниваемых нами методах и попытаемся установить причины этих различий. Для всех исследуемых соединений УФ-спектры снимались в кварцевой кювете с длиной хода 3 м. Кювета перед съемкой откачивалась до высокого вакуума. В ИК-Фурьеспекроскопии в области поглощения, где проявляются частоты обоих изомеров исследуемых молекул (около 100 см⁻¹) можно использовать кюветы только с полиэтиленовыми окнами, ко-

Т	а	б	Л	И	Ц	а	1
---	---	---	---	---	---	---	---

Частоты переходов крутильного колебания и значения ω_e , x_{11} для s-*mpaнc*-изомера акрилоилфторида в основном (S_0) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

		УФ-спек	тр [9]		ИК-Фурье-спектр [26]			
(0-v)- переход	v ₀₀	v'' = 525	v'' = 1226	средние значения*	v-(v+1)- переход	частота	(0-v)- переход	частота
0-1	116,7	116,7	116,0	116,5±0,5	0-1	116,7	0-1	116,7
0-2	231,7	231,6	230,6	231,3±0,7	1-2	114,9	0-2	231,6
0-3	345,0	344,8	343,8	344,5±0,7	2-3	113,1	0-3	344,7
0-4	456,4	456,2	455,7	456,1±0,4	3-4	111,4	0-4	456,1
0-5	566,2	565,9	565,7	565,9±0,3	4-5	109,4	0-5	565,5
0-6	674,2	673,9	_	674,1±0,6	5-6	107,7	0-6	673,2
0-7	780,5	780,2	_	780,4±0,6	6-7	105,8	0-7	779,0
0-8	885,0	884,7	_	884,9±0,6	7-8	104,0	0-8	883,2
ω _e	117,6	117,5	116,7	117,3±0,6	_	_	_	_
-x ₁₁	0,9	0,9	0,7	0,8±0,1	_	_	_	_

* Указаны наибольшие отклонения от среднего значения. Для v = 6-8 ошибка 3σ.

Частоты переходов крутильного колебания и значения ω_e и x_{11} для s-*цис*-изомера акрилоилфторида в основном (S₀) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

		УФ-спек	тр [9]			ИК-Фурье-сі	1ектр [26]	
(0-v)- переход	v_{00}	v'' = 975	v'' = 1124	средние значения*	v-(v+1)- переход	частота	(0-v)- переход	частота
0-1	101,3	101,2	100,9	101,1±0,2	0-1	101,4	0-1	101,4
0-2	201,4	201,3	201,0	201,2±0,2	1-2	100,2	0-2	201,6
0-3	300,3	300,2	300,4	300,3±0,1	2-3	98,9	0-3	300,5
0-4	398,1	398,0	_	398,1±0,1	3-4	97,6	0-4	398,1
0-5	494,7	494,5	_	494,6±01,	4-5	96,3	0-5	494,4
ω _e	101,9	101,8	101,2	101,6±0,4	_	_	_	_
-x ₁₁	0,6	0,6	0,4	0,5±0,1	_	_	_	_

* Указаны наибольшие отклонения от среднего значения.

Таблица З

Частоты переходов крутильного колебания и значения ω_e и x_{11} для s-*транс*-изомера метакрилоилхлорида в основном (S₀) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

			УФ-спектр	0 [23, 30]			ИК-Фурье-с	епектр [29]
(0-v)- переход	v ₀₀	v' = 511	v' = 705	v' = 1689	v' = 1928	средние значения*	v-(v+1)- переход	частота
0-1	63,6	64,2	63,6	63,3	63,8	63,7±0,3	0-1	55,7
0-2	126,6	127,7	126,7	126,2	126,7	126,8±0,6	1-2	53,8 (109,5)**
0-3	189,1	190,2	189,1	188,8	188,9	189,2±0,6	2-3	52,4(161,9)
0-4	251,1	252,0	250,9	251,0	250,2	251,0±0,6	_	_
0-5	312,5	312,9	312,0	312,8	310,7	312,2±0,9	_	_
0-6	373,4	373,0	372,5	374,3	_	373,3±0,8	_	_
0-7	433,7	-	_	_	_	433,7±0,8	-	_
0-8	493,6	_	_	_	_	493,6±0,8	_	_
ω _e	63,8	64,7	64,0	63,6	64,2	64,0±0,5	_	_
-x ₁₁	0,3	0,4	0,3	0,2	0,4	0,3±0,1	_	_

* Указаны наибольшие отклонения от среднего значения.

** В скобках значения (0-v)-переходов, полученные из переходов v-(v+1).

торые пропускают излучение в этой области, но не держат вакуум. При анализе 136 полос поглощения колебательной структуры $n-\pi^*$ -перехода УФ-спектра высокого разрешения молекулы метакрилоилхлорида были найдены 0-0-полосы и фундаментальные частоты ее обеих изомерных форм в электронном состоянии S₁ [23]. От 0-0-полосы, фундаментальных частот v' = 511, v' = 705, v' = 1689, $v' = 1928 \text{ см}^{-1}$ s-*транс*-изомера этого соединения по программе NONIUS нами были построены ТД. Из каждой таблицы Деландра по программе **v**₀₀ найдена частота крутильного колебания, и определены значения (0-v)-переходов этого колебания (табл. 3). Как видно из табл. 3, наблюдается хорошее согласие в значениях частот крутильного колебания

Рис. 3. Длинноволновый ИК-спектр метакрилоилхлорида в газовой фазе, полученный с разрешением 0,1 см⁻¹. Отчетливые, интенсивные и одинаково-разнесенные линии, наблюдаемые ниже 230 см⁻¹, отнесены к примеси HCI [29]

и (0-v)-переходов этого колебания для этого изомера, полученных в разных ТД Многократное повторение значений частот для одинаковых (0-v)-переходов в разных таблицах Деландра [23] обеспечивает надежность отнесения и высокую точность их определения. Как видно из табл. 3, частота крутильного колебания s-mpancизомера мет-акрилоилхлорида в газе составляет $63 \pm 0.3 \text{ cm}^{-1}$ и отличается от значения 55,7 см⁻¹, полученного для этого изомера из ИК-спектров в дальней области [29]. Как показано на рис. 3, полиэтиленовые окна кюветы в ИК-Фурьеспектрах в дальней области не держат вакуум и происходит гидролиз вещества даже при продувке азотом при высоком давлении. Вследствие гидролиза метакрилоилхлорида его концентрация уменьшается, и мы наблюдаем малоинтенсивный спектр. Авторы [29] отмечают на этом спектре много полос поглощения HCl, но не замечают, что в области 64 см⁻¹ есть полоса поглощения, которую хорошо видно, особенно, если увеличить интенсивность спектра. Низкая интенсивность ИК-Фурье спектра привела авторов [29] к ошибке в определении значений частот каждого изомера метакрилоилхлорида. Значение 55,7 см⁻¹, очевидно, относится к частоте крутильного колебания цис-изомера этой молекулы. Анализ колебательной структуры *n*-*π**-перехода УФ-спектра паров метакрилоилхлорида позволил по программе NONIUS построить три таблицы Деландра для s-*цис*-изомера этой молекулы: от 0-0-полосы, v' = 584 см⁻¹, v' = 1826 см⁻¹ и

по программе **v**₀₀ определить частоту крутильного колебания и значения (0-v)-переходов (табл. 4). Как видно из табл. 4, частота крутильного колебания для s-*цис*-изомера этой молекулы равна $53,2 \pm 0,2$ см⁻¹ и тоже, как для s-*транс*-изомера, многократно повторяется, обеспечивая надежность отнесения и точность ее измерения. Значения частоты s-*цис*-изомера в этих двух методах после нашего переотнесения частоты 55,7 см⁻¹ работы [29] отличаются на 2,57 см⁻¹. Это связано с разным выбором начала полос. Обычно начало полос неизвестно. Ошибаясь в измерении полос разных переходов, можно неправильно восстановить всю систему уровней крутильного колебания. Однако наш метод даже при незнании начала полос имеет преимущество в том, что при анализе колебательной структуры $n - \pi^*$ -перехода УФ-спектров различные переходы находятся как разностные величины. В колебательной структуре *n*-*π**-перехода УФ-спектров исследуемых соединений наблюдаются полосы двух типов: перпендикулярные (С) и гибридные (А + В)-типов с разными контурами. Полосы каждого типа имеют характерные особенности на своем контуре: полосы (С)-типа обычно имеют на своем контуре максимум поглощения, на контуре полос (А + В)-типа наблюдается провал. Измеряя полосы поглощения одного типа единообразно (по характерной особенности), можно точно найти разность между полосами одного контура. Если переход происходит между полосами

		УФ-спектр [2]	3, 30]		ИК-Фурье-спектр [29]	
(0-v)- переход	v ₀₀	v' = 584	v' = 1826	средние значения*	v-(v+1)- переход	частота
0-1	53,1	53,4	53,2	53,2±0,2	0-1	40,5
0-2	105,9	106,7	106,0	106,2±0,4	_	_
0-3	158,5	159,8	158,6	159,0±0,7	_	_
0-4	210,8	212,7	210,9	211,5±1,0	_	_
0-5	262,9	_	262,8	262,9±0,1	_	_
0-6	_	_	314,5	314,5±0,8	_	_
0-7	_	_	365,9	365,9±0,8	_	_
ω _e	53,2	53,5	53,3	53,3±0,2	_	_
-x ₁₁	0,1	0,1	0,1	0,1±0,02	_	_

Частоты переходов крутильного колебания и значения ω_e и x₁₁ для s-*цис*-изомера метакрилоилхлорида в основном (S₀) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

* Указаны наибольшие отклонения от среднего значения.

разного типа, то вводится в ТД сдвиг на контур. Такое измерение обеспечивает точность значений (0-v)-переходов крутильного колебания для обеих изомерных форм исследуемых молекул при определении их по программе v₀₀ из построенных ТД. В работе [30] с использованием экспериментальных значений (0-v)-переходов обеих изомерных форм метакрилоилхлорида (табл. 3, 4), с учетом разности энергии изомеров этой молекулы, найденную нами в этой работе, и разложения вращательной постоянной $F(\phi)$ в ряд Фурье по программе TORSIO [32], получены параметры V, потенциальной функции внутреннего вращения (ПФВВ) этой молекулы в состоянии S₀ (табл. 5). Из этой таблицы видно, что значения параметров V_n ПФВВ, построенных по экспериментальным значениям (0-v)-переходов крутильного колебания обеих изомерных форм метакрилоилхлорида УФ-спектра и по частотам изомеров ИК-Фурье-спектра, в этих сравниваемых методах сильно отличаются. Ошибочное определение частот крутильного колебания для обеих изомерных форм метакрилоилхлорида в методе исследования длинноволновых привело к ошибочным ИК-Фурье-спектров значениям параметров V_n и барьера H^{\neq} внутреннего вращения (табл. 5). «Экспериментальный» барьер ВВ в этом методе оказался в 2 раза меньше, чем рассчитанный квантовомеханическим методом [29] (табл. 5). В то же время близкое значение барьера ВВ, полученное из «экспериментальной» ПФВВ применяемого нами метода и рассчитанное квантовомеханическим путем [29], подтверждает, что ПФВВ, рассчитанная квантово-механическим способом лучше описывается значениями (0-v)-переходов крутильного колебания обеих изомерных форм, найденными из анализа колебательной структуры $n-\pi^*$ -перехода УФспектра поглощения высокого разрешения паров метакрилоилхлорида.

Большой интерес с точки зрения различия значений частот крутильного колебания и (0-v)переходов этого колебания для обеих изомерных форм исследуемых соединений в электронном состоянии S₀ в рассматриваемых нами методах представляет метакрилоилфторид. В наших ранних работах [3, 4, 6] из анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектра поглощения высокого разрешения паров метакрилоилфторида было установлено, что частота крутильного колебания s-mpanc-изомера составляет 80,3 см⁻¹, s-*цис*-изомера – 59,3 см⁻¹. В этих работах определены также значения переходов крутильного колебания обеих изомерных форм исследуемой молекулы. Из ИК-Фурье-спектров были определены значения частоты для s-mpancи s-цис-изомера метакрилоилфторида, равные 73,2 и 55,6 см⁻¹ соответственно [33]. Отличаются в этих сравниваемых методах и значения (0-v)-переходов (системы уровней энергии) крутильного колебания исследуемой молекулы [3,

515

Параметры V_и потенциальной функции внутреннего вращения V(ϕ) и барьер внутреннего вращения $\Delta H^{2}_{s,mnnuc,s,mnc}$ метакрилоилхлорида в основном (S₀) электронном состоянии (см⁻¹)

,		
УФ-спектр [31]	УФ-спектр [6]	ИК-Фурье-спектр [29]
300±20	250±40	288±2
1780±40	1800±100	813±37
100±10	110±20	120±3
-35±10	-65±25	_
_	_	_
_	_	39±5
1980±80	1980±80	1056 (1877)*
	УФ-спектр [31] 300±20 1780±40 100±10 -35±10 - 1980±80	УФ-спектр [31] УФ-спектр [6] 300±20 250±40 1780±40 1800±100 100±10 110±20 -35±10 -65±25 - - 1980±80 1980±80

* Квантово-механический расчет [29].

4, 6, 33]. На эти различия в значениях частот и (0-v)-переходов крутильного колебания для обеих изомерных форм метакрилоилфторида в двух методах обратили внимание авторы работы [34] и провели квантово-механический расчет параметров V_n ПФВВ этой молекулы с помощью DZ и DZP-теории. Авторы построили также «экспериментальные» ПФВВ метакрилоилфторида по экспериментальным уровням наших работ [3, 4, 6] и работы [33]. При сравнении ПФВВ, построенных по результатам квантово-механического расчета, и двух «экспериментальных»

Рис. 4. Потенциальные функции внутреннего вращения метакрилоилфторида, полученные из расчета и из экспериментальных данных (s-*mpahc*-структуре соответствует угол 180°, а s-*цис*-структуре соответствует угол 0° [34])

ПФВВ авторы [34] пришли к выводу, что ПФВВ, построенная по уровням энергии метода анализа колебательной структуры УФ-спектра поглощения, больше совпадает с рассчитанной ПФВВ, особенно в ее нижней части. Барьер ВВ ПФВВ, экспериментальных полученной ИЗ (0-v)переходов крутильного колебания применяемого нами метода, равен 6,5 ккал/моль [4, 6]. Это значение ближе к теоретически рассчитанному барьеру ВВ, равному 7 ккал/моль [34], чем значение 5,1 ккал/моль, полученное из ИК-Фурьеспектров в дальней области [33]. Таким образом, по результатам работы [34] получается, что применяемый нами метод анализа колебательной структуры УФ-спекра поглощения при изучении ВВ молекулы метакрилоилфторида является более надежным (рис. 4). В ранних работах анализ колебательной структуры УФ-спектра поглощения высокого разрешения проводился без применения разработанного нами позже комплекса программ.

В работе [24] были проанализированы и отнесены 153 полосы поглощения колебательной структуры УФ-спектра поглощения высокого разрешения паров метакрилоилфторида. Как и для других исследуемых паров соединений, для метакрилоилфторида найдены частоты 0-0-полос обеих изомерных форм: $v_{00mpanc} = 35\ 670,0\ cm^{-1}, v_{00\mu c} = 35\ 371,1\ cm^{-1}$ и фундаментальные колебательные частоты для обеих изомерных форм молекулы как в основном (S₀), так и в возбужденном (S₁) электронных состояниях. Многие фундаментальные частоты являются началами таблиц Деландра. Для s-mpaнc-изомера молекулы метакрилоилфторида в электронном состоянии S₀ по программе NONIUS были построены ТД, начало которых (v'' = 0, v' = 0) соответствуют 0-0-полосе, фундаментальным частотам $v'' = 513 \text{ см}^{-1}$, $v'' = 803 \text{ см}^{-1}$, $v'' = 1654 \text{ см}^{-1}$, $v''=1827 \text{ см}^{-1}$, $v'' = 2995 \text{ см}^{-1}$ и обертону частоты v"= 1654см⁻¹ этого изомера. Для цис-изомера этой молекулы по этой же программе построены ТД от 0-0-полосы, $v'' = 565 \text{см}^{-1}$, $v'' = 1800 \text{см}^{-1}$. По программе **v**₀₀ в электронном состоянии S₀ были определены частоты крутильного колебания и значения (0-v)-переходов этого колебания как для s-mpaнc-, так и для s-цис-изомеров в каждой ТД (табл. 6, 7). Среднее значение частоты крутильного колебания для s-mpahc-изомера молекулы метакрилоилфторида, полученное из всех ТД, равно $80,9 \pm 0,4$ см⁻¹. Оно близко к значению $80,3 \text{ см}^{-1}$, полученному нами в ранних работах

[3, 4, 6], и по-прежнему сильно отличается от значения 73,2 см⁻¹ для этой частоты, найденной в ИК-Фурье-спектре. Как видно из табл. 6, значения всех одинаковых (0-v)-переходов крутильного колебания, полученные из семи ТД для s-*транс*-изомера метакрилоилфторида, близки между собой до колебательного квантового числа, равного 6. Близость значений одинаковых (0-v)-переходов этого колебания наблюдается и для s-*иис*-изомера метакрилоилфторида в трех ТД тоже до высокого колебательного квантового числа 6. Среднее значение частоты крутильного колебания для этого изомера составляет 59.8 ± 0.3 см⁻¹ (табл. 7) и [24]. Это значение близко к значению частоты крутильного колебания s-uuc-изомера, равному 59,3 см⁻¹ [3, 4, 6], и отличается от значения для этого изомера, найденного из ИК-Фурьеспектра [33]. В работе [10] с использованием всех экспериментальных уровней энергии крутильного колебания обеих изомерных форм молекулы метакрилоилфторида работы [24], с учетом разности энергии ее изомеров и разложения вращательной постоянной $F(\phi)$ в ряд Фурье по программе TORSIO [32] получены параметры V_n ПФВВ, и определен барьер H^{\neq} внутреннего вращения (табл. 8). В этой же работе современными квантово-механическими методами МР2/ aug-cc-pVTZ и с помощью многоконфигурационной квазивырожденной теории возмущения второго порядка методом XMCQDPT2/SA(2)-CASSCF(6,5)/aug-cc-pVTZ также рассчитаны параметры V, ПФВВ и барьер внутреннего вращения Н[≠] молекулы метакрилоилфторида (табл. 8). Как видно из табл. 8, значения параметров V, ПФВВ и барьеров внутреннего вращения H^{\neq} метакрилоилфторида, рассчитанные двумя современными квантово-механическими методами, и значения аналогичных параметров V_" ПФВВ и H^{\neq} , полученные по нашим экспериментальным (0-v)-переходам крутильного колебания обеих изомерных форм этого соединения, близки. Это означает, что значения (0-v)-переходов крутильного колебания обеих изомерных форм молекулы метакрилоилфторида, полученные из анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектра высокого разрешения паров этого соединения, хорошо описывают ПФВВ, построенные по квантово-механически рассчитанным параметрам V, ПФВВ двух методов, и являются точными. В отличие от работы [34], в работе [10] близки также значения «экспериментального» барьера H^{\neq} и значения, рассчитанные двумя методами (табл. 8). Точность и надежность значе-

Таблица б

				УФ-спектр	[24]				ИК- спектр**
(0-v)- переход	ν ₀₀	v'' = 513	v'' = 803	v'' = 1654	v'' = 1827	v'' = 2995	$v'' = 1654 \cdot 2$	средние значения*	значения (0-v)
0-1	81,3	80,6	80,8	81,1	81,1	80,8	80,7	80,9±0,4	73,2
0-2	161,1	160,4	160,8	161,4	161,1	160,3	160,4	160,8±0,6	145,6
0-3	239,3	239,6	240,0	240,8	240,3	239,7	239,4	239,9±0,8	217,5
0-4	318,0	318,9	318,4	319,5	318,7	318,4	318,2	318,6±0,9	288,7
0-5	396,2	396,0	_	397,1	396,8	396,1	396,4	396,4±0,7	359,4
0-6	473,5	_	_	473,8	473,1	472,9	473,6	473,4±0,5	429,4
0-7	549,6	_	_	_	_	_	_	549,6±0,7	497,9
0-8	624,9	_	_	_	_	_	_	624,9±0,7	565,7
ω _e	81,4	80,8	81,6	81,5	81,2	81,8	81,3	81,4±0,6	_
-x ₁₁	0,4	0,3	0,4	0,4	0,4	0,5	0,4	0,4±0,1	_

Частоты переходов крутильного колебания и значения ω_e и x₁₁ для s-*mpaнc*-изомера метакрилоилфторида в основном (S₀) электронном состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

* Указаны наибольшие отклонения от среднего значения.

** Значения (0-v)-переходов получены из переходов v-(v+1) работы [33].

Таблица 7

Частоты переходов крутильного колебания и значения ω_e и x_{11} для s-*цис*-изомера метакрилоилфторида в основном (S₀) состоянии, полученные из нескольких таблиц Деландра УФ-спектра и из ИК-Фурье-спектра (см⁻¹)

	У	/Ф-спектр [24	1]		ИК-Фурье-спектр [33]			
(0-v)- переход	ν ₀₀	v'' = 565	v'' = 1800	средние значения*	v-(v+1)- переход	Частота	(0-v)- переход	частота
0-1	59,5	60,0	59,8	59,8±0,3	0-1	55,6	0-1	55,6
0-2	118,8	119,0	119,3	119,0±0,3	1-2	54,7	0–2	110,3
0-3	177,7	177,9	178,4	178,0±0,4	2–3	54,0	0–3	164,3
0-4	236,4	236,5	237,0	236,6±0,3	_	_	_	_
0-5	294,7	294,9	295,1	294,9±0,2	_	_	_	_
0-6	352,8	353,1	353,4	353,1±0,3	_	_	_	_
0-7	_	_	408,4	408,4±0,5	_	_	_	_
0-8	_	_	466,3	466,3±0,5	_	_	_	_
ω _e	59,7	60,0	60,1	60,0±0,3	_	_	_	_
-x ₁₁	0,2	0,2	0,3	0,2±0,1	_	_	_	_

* Указаны наибольшие отклонения от среднего значения.

Параметр	УФ-спектр [10]	ИК-Фурье– спектр [33]	MP2/aug-cc-pVTZ [10]	XMCQDPT2/SA(2)-CASSCF(6,5)/aug-cc- pVTZ [10]
V ₁	140±60	257	221,1	217,7
V ₂	1900±50	1582	1879,4	1919,0
V ₃	230±70	173	159,5	178,6
V_4	-30±10	_	-21,2	-20,4
ΔH^{\neq}	2100±50	1797	2092,8	2132,8
ΔH	340±40	430	356,0	348,1

Параметры V_n потенциальной функции внутреннего вращения V(φ), барьер внутреннего вращения $\Delta H^{\ddagger}_{s-mpanc-s-quc}$ и разность энергии ΔH изомеров метакрилоилфторида в основном (S₀) электронном состоянии (см⁻¹)

ний (0-v)-переходов крутильного колебания для обеих изомерных форм метакрилоилфторида в методе, применяемом нами, подтверждается также многократным повторением близких значений одинаковых (0-v)-переходов крутильного колебания как для s-*mpaнc*-, так и для s-*цис*изомеров, полученных из разных ТД (табл. 6, 7). Как видно из табл. 8, основной параметр V_2 , характерный для сопряженных систем, как и барьер H^{\neq} внутреннего вращения, сильно занижен при определении параметров V_n ПФВВ в ИК-Фурье-спектроскопии. Это связано с ошибочным определением частот крутильного колебания в этом методе как для s-*mpaнc*-, так и для s-*цис*-изомеров и ошибочным восстановлением всей системы уровней крутильного колебания для каждого изомера. Такое сильное различие в значениях частот обеих изомерных форм метакрилоилфторида, особенно для s-*mpaнc*изомера, в этих двух сравниваемых методах [24, 33], возможно, связано с полным гидролизом исследуемого соединения. Из работы [33] видно,

Рис. 5. ИК-Фурье-спектр газообразного метакрилоилфторида. Спектр записан при давлении образца примерно 180 Торр в ячейке с длиной хода 1 м (число сканирований 3000, разрешение 0,25 см⁻¹; спектральное усиление не проводилось; звездочкой (*) обозначены полосы H₂O [33]

		УФ-спектр [[8]			ИК	Фурье-спектр [3.	5, 36]	
дохэдэп-(v-0)	V 00	v' = 915	v' = 450	средние значения*	v-(v+1)- переход	частота	тохэдэп-(v-0)	частота	частота с учетом резонанса [8]
0-1	106,3	105,7	105,8	$105,9{\pm}0,5$	0-1(3-4)***	108,48	0-1	108,48	106,85
0-2	211,6	211,0	210,8	$211, 1\pm 0, 5$	1-2(0-1)***	106,85	0-2	215,33	212,09
0-3	315,9**	315,9**	315,6**	$315, 8\pm 0, 5$	2-3(1-2)***	105,24	0-3	320,57	310,85
0-4	419,3	420,4	420,0	419,9±0,6	3-4(4-5)***	103,65	0-4	424,22	419,33
0-5	521,6	I	I	521,6±0,5	4-5(5-6)***	102,03	0-5	526,25	522,98
9-0	623,0	I	I	623,0±0,5	5-6(6-7)***	100,39	9-0	626,64	625,01
0-7	723,3	I	I	723,3±0,5	6-7(2-3)***	98,76	0-7	725,40	725,40
0-8	822,6	I	I	822,6±0,5	7-8(7-8)***	96,86	0-8	822,28	822,28
00e	106,8	105,9	106,0	$106, 2\pm 0, 4$	I	I	Ι	I	I
¹¹ x-	-0,5	-0,2	-0,2	$-0, 3\pm 0, 1$	I	I	I	I	I

* Указаны наибольшие отклонения от среднего значения.

** Значения уровней, которые получаются по ω_е и−x₁₁, приведенным в соответствующем столбце таблицы (экспериментальный уровень сдвинут из-за резонанса Ферми и равен 310.6±0.8 см⁻¹).

*** В скобках дано новое отнесение полос поглощения ИК-Фурье-спектра.

Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 6 Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2023. Т. 64. № 6

Таблица 9

		УФ-с	пектр [8]			ИК-Фурье-спектр [2	35, 36]	
(0-v)- тереход	v_{00}	v' = 735	$v' = 466 \cdot 2$	средние значения	v-(v+1)- переходы	частота	(0-v)-переход	частота
0-1	86,1	86,2	86,0	$86,1\pm 0,5$	0-1	95,36(88)*	0-1	95,36
0-2	171,8	172,2	171,4	$171,8\pm 0,5$	1-2	93,48	0-2	188,84
0-3	257,2	258,4	257,2	$257, 6\pm 0, 5$	2-3	$91,64(80,5)^{**}$	0-3	280,48
0-4	342,3	344,4	342,9	$343, 2\pm 0, 8$	3-4	89,71	0-4	370,19
0-5	427,8	430,8	I	$429, 3\pm 1, 5$	4-5	87,74	0-5	457,93
9-0	I		I	-	5-6	85,70	0-6	543,63
ω	86,2	86,8	86,4	86,5±0,2	I	1	1	I
$-x_{11}$	-0,2	-0,2	-0,2	$-0,2\pm 0,1$	I	I	I	I

что в ИК-Фурье-спектрах в области поглощения, в которой проявляются полосы частот крутильного колебания, наблюдается очень много полос воды (рис. 5).

Для акрилоилхлорида анализ колебательной структуры *n*-*π**-перехода УФ-спектра поглощения паров этого соединения был проведен в работе [8]. Из 114 полос поглощения анализируемого спектра были определены частоты 0-0- полос и фундаментальных колебательных частот s-mpanc- и s-цис-изомеров в электронных состояниях S₀ и S₁. По программе NONIUS для s-*транс*-изомера акрилоилхлорида от 0-0-перехода, v' = 915 см⁻¹, v' = 450 см⁻¹ были построены ТД и из них по программе v₀₀ определены частоты крутильного колебания и значения (0-v)переходов до высокого значения колебательного числа, равного 8, гармонические частоты ω, и коэффициенты ангармоничности - x₁₁ (табл. 9). Частота крутильного колебания для s-mpancизомера исследуемой молекулы, полученная в методе анализа колебательной структуры *n*- π^* перехода УФ-спектра, равна 105.9 ± 0.5 см⁻¹ (табл. 9). Значение этой частоты, полученной из ИК-Фурье-спектра в дальней области, отличается и составляет 108,48 см⁻¹ [35, 36]. При этом разница в значениях (0-v)-переходов в сравниваемых методах становится еще больше с увеличением v. Мы предполагаем, что это связано с резонансом Ферми третьего уровня крутильного колебания симметрии а" с составной частотой $257 + 106 = 363 \text{ см}^{-1}$ той же симметрии (a' - a'' =а"). Это предположение подтверждено сдвигом третьего столбца на одну и ту же величину во всех построенных ТД для этого изомера. Среднее значение (0-3)-перехода согласно полученным значениям ω_e и $-x_{11}$ из несмещенных переходов (табл. 9) должно быть 315.8 ± 0.5 см⁻¹, а экспериментально оно получилось 310,6 ± 0,8 см⁻¹. Сдвиг в значениях (0-v)-переходов крутильного колебания можно увидеть только в методе, применяемом нами, и в этом его преимущество. В методе исследования ИК-Фурье-спектров в длинноволновой области учесть резонанс Ферми практически невозможно, особенно если он не острый. Авторы работ [35, 36] проводят нумерацию полос поглощения по порядку, не предполагая, что первая из них появилась в результате смещения из-за резонанса Ферми. Это приводит к ошибочному восстановлению всей системы уровней энергий s-mpanc-изомера, а следовательно, к ошибочному определению гармонической частоты ω и коэффициента ангармоничности *x*₁₁ и к ошибочному вычислению параметров

Габлица 10

V, ПФВВ. Если изменить нумерацию полос поглощения в ИК-Фурье-спектре, учитывая резонанс Ферми, то получим для s-mpanc-изомера достаточно хорошее совпадение значений (0-у)переходов, определенных в обоих методах (табл. 9). Значения частот крутильного колебания цисизомера акрилоилхлорида в сравниваемых нами методах для основного (S₀) электронного состояния тоже отличаются. Частота крутильного колебания этого изомера, полученная при анализе колебательной структуры $n-\pi^*$ -перехода УФ-спектра поглощения паров акрилоилхлорида, равна 86,1 ± 0,5 см⁻¹ (табл. 10). Это значение многократно повторяется в трех (ТД): от 0-0-полосы, v' = 735 cm^{-1} и обертона частоты v' = 446 cm^{-1} , что указывает на ее надежное и точное определение. Кроме того, к этому значению частоты близко экспериментальное значение полосы в КРспектре, равное 80,5 см⁻¹, отнесенное авторами работы [35] к 2-3-переходу. Подтверждает также значение частоты крутильного колебания цисизомера акрилоилхлорида, полученное в применяемом нами методе, квантово-механический расчет этой частоты, равный 88 см⁻¹ [36]. В работе [36] приведена для *цис*-изомера v_{круг.} = 95,36 см⁻¹. Спектр акрилоилхлорида в работе [36] не приведен, а в работе [35] для цис-изомера этого соединения полосы поглощения в ИК-Фурьеспектре в дальней области имеют малую интенсивность вследствие гидролиза соединения. По результатам анализа колебательной структуры *n*- π^* -перехода УФ-спектра акрилоилхлорида [8] нами в работе [37] были рассчитаны параметры V, ПФВВ. Расчет проведен по программе TORSIO [32] с использованием значений всех (0-v)-переходов обеих изомерных форм акрилоилхлорида (табл. 9, 10), разности энергии изомеров и разложения $F(\phi)$ в ряд Фурье. Барьер H^{\neq} внутреннего вращения, полученный из ПФВВ по уровням энергии нашего метода, близок к квантово-механически рассчитанному в работе [36] (табл. 11). В табл. 11 приведены также параметры V_n ПФВВ, построенной по значениям (0-v)-переходов крутильного колебания обеих изомерных форм, предложенным из анализа ИК-Фурье-спектров. Как видно из этой таблицы, значение барьера H^{\neq} , полученного в этом методе, хуже совпадает с расчетным значением этой же работы [36].

Таким образом, можно сделать вывод, что ИК-Фурье-спектры, являясь спектрами высокого разрешения, ограничены в своих возможностях при изучении внутреннего вращения. Это связано с объективными трудностями метода. Недостатки метода ИК-Фурье-спектров, приводящие к неточным или ошибочным значениям (0-v)-переходов крутильного колебания, как мы считаем, связаны со следующими объективными трудностями: 1) полосы в дальней ИК-области имеют низкую интенсивность; 2) трудно полностью исключить полосы паров воды и избежать частичного или полного гидролиза исследуемого соединения, приводящего к уменьшению концентрации исследуемого соединения и интенсивности полос; 3) затруднение в отнесении переходов с высокими квантовыми числами, особенно если они смещены из-за резонанса Ферми с другими колебаниями той же симметрии; 4) переналожение близких частот крутильного колебания разных поворотных изомеров (полоса одного изомера «вклинивается» в ряд идущих друг за другом полос поглощения другого изомера) приводит к ошибочному восстановлению всей системы (0-v)-переходов и ошибочному определению гармонических частот ω_{a} и коэффициентов ангармоничности – x₁₁ каждого изомера; 5) измерение полос поглощения изомеров не в начале полос тоже может привести к ошибочному восстановлению всей системы (0-v)-переходов крутильного колебания изомеров и ошибочному определению гармонических частот ω, и коэффициентов ангармоничности – x_{11} каждого изомера. Все эти объективные трудности, проявляющиеся в ИК-Фурье-спектрах в дальней области, отсутствуют в методе анализа колебательной структуры *n*-*π**-перехода УФ-спектра поглощения высокого разрешения: 1) повышением давления и температуры можно повысить интенсивность полос; 2) применение кварцевой кюветы (соответственно, и кварцевых окон) позволяет получить высокий вакуум и избежать гидролиза; 3) резонанс Ферми проявляется одинаковым сдвигом полос поглощения во всем столбце таблицы Деландра и учитывается; 4) 0-0-полосы обеих изомерных форм исследуемых соединений сильно разнесены (волновые числа этих двух 0-0 полос s-mpaнс- и s-цис-изомеров находятся далеко друг от друга) и переналожение полос разных изомеров невозможно; 5) все (0-v)-переходы являются разностными величинами между полосами одного или другого типа: С или А + В. Они измеряются по характерным особенностям на контуре для каждого типа полосы и поэтому значения (0-v)-переходов крутильного колебания определяются точно.

Все это позволяет сделать вывод: при изучении ВВ паров исследуемых соединений в основ-

Параметры	УФ-спектр [37]	ИК-Фурье-спектр [35]	ИК-Фурье-спектр [36]
V ₁	195±20	96	127±21
V	1910±40	1734	1731±20
V ₃	40±10	134	42±5
V ₄	-160±10	-123	-92±10
V	_	_	-18±1
V ₆	_	_	11±3
ΔH^{\neq}	2030±60	1840	1818 (2057)*

Параметры V_n потенциальной функции внутреннего вращения V(φ) и барьер внутреннего вращения ∆*H*[≠]_{s-moanc-s-uuc} акрилоилхлорида в основном (S₀) электронном состоянии (см⁻¹)

* Квантово-механический расчет MP2/6-311G^{*}[36].

ном (S₀) электронном состоянии двумя методами, представленными выше, более надежным и точным является метод анализа колебательной структуры *n*-*π**-перехода УФ-спектра поглощения высокого разрешения. Это подтверждается многократным повторением близких значений одинаковых (0-v)-переходов крутильного колебания как для s-mpaнc-, так и для s-цис-изомеров, полученных из разных ТД для каждого изомера исследуемых соединений. Надежность и точность применяемого нами метода подтверждается также близостью значений параметров V_n «экспериментальной» ПФВВ, определенной по программе TORSIO [32], и барьера H^{\neq} внутреннего вращения с параметрами V_n ПФВВ и барьером H^{\neq} , рассчитанными современными квантово-механическими методами.

Изучение внутреннего вращения в возбужденном (S₁) электронном состоянии исследуемых нами соединений возможно не только с применением метода анализа колебательной структуры *n*-*π**-перехода УФ-спектра поглощения высокого разрешения паров этих соединений, но и метода анализа их спектров флуоресценции. Однако, как известно из литературы, спектры флуоресценции для исследуемых соединений не получены, вероятно, из-за маленького квантового выхода, как это наблюдается у акролеина - родоначальника исследуемого нами класса соединений и близкого к ним по строению. Авторы работы [38] указывают на маленький квантовый выход для акролеина и на низкую интенсивность для него спектра флуоресценции. В работе [38] авторы получили спектр поглощения акролеина в состоянии S₁ при комнатной и

низкой температуре в сверхзвуковой струе. Для этого они использовали метод полостной кольцевой спектроскопии, известный в зарубежной литературе как метод CRDS (Cavity Ringdown Spectroscopy). Этот метод основан на измерении времени затухания излучения в кювете с двумя высокоотражающими зеркалами при многократном прохождении света между ними. Все полученные полосы поглощения акролеина с предложенным авторами отнесением приведены в табл. 3 работы [38]. Анализ колебательной структуры *n*-*π**-перехода УФ-спектра поглощения высокого разрешения акролеина был проведен в работе [7]. В этой работе были определены 0-0-полосы и фундаментальные частоты обеих изомерных форм акролеина в электронных состояниях S₀ и S₁. По программе NONIUS построены таблицы Деландра от 0-0-полос s-транс- и s-цис-изомеров акролеина [7]. По программе **v**₀₀ определены частоты крутильного колебания и значения (0-v)-переходов этого колебания до высокого значения колебательного числа v, гармонические частоты ω и коэффициенты ангармоничности x₁₁ для обеих изомерных форм акролеина в обоих электронных состояниях [7]. В этих двух методах [7, 38] мы можем сравнивать только значения для s-mpanc-изомера, так как при низкой температуре метода CRDS s-цис-изомер вымораживается. В сравниваемых методах значения волновых чисел 0-0-полос s-mpanc-изомера акролеина совпадают (25861 \pm 0,5 см⁻¹) [7, 38]. Близки также в электронном состоянии S₁ значения восьми фундаментальных частот, полученных в работах [7, 38] из анализа спектров в этих двух разных методах. Частоты крутильного

колебания в состоянии S₁ для s-mpanc-изомера акролеина в этих методах близки: $v_{18} = 249 \text{ см}^{-1}$ [7], v₁₈ = 251 см⁻¹ [38]. Авторы работы [38] находят и другие переходы крутильного колебания: 18(0,1), 18(1,0), 18(2,0), 18(1,1), 18(2,2), 18(2,1), 18(3,2), 18(3,0). Таким образом, авторы работы нашли 8 переходов крутильного колебания (18 - номер крутильного колебания в таблице фундаментальных частот акролеина, первое число в скобках, в отличие от наших работ, соответствует колебательному квантовому числу возбужденного электронного состояния, второе соответствует колебательному квантовому числу основного состояния). Используя значения волновых чисел полос поглощения этих переходов табл. 3 работы [38], мы построили от 0-0-полосы спектра акролеина этой работы таблицу Деландра [39]. При составлении таблицы Деландра мы увидели, что отнесение полосы 26 579 см⁻¹ к переходу (3.0) противоречит их отнесению полосы 26 276 см⁻¹ к переходу 18 (3.2), так как тогда не будут совпадать в этой таблице значения (0-2)-переходов основного состояния. В табл. 12 мы привели частоты крутильных переходов в возбужденном электронном состоянии двух экспериментальных работ и расчетной [40]. Из этой таблицы видно, что значение (2-3)-перехода работы [7] близко к значению квантово-механического расчета этого перехода, в то время как в работе [38] значение этого перехода довольно сильно отличается от расчетного [40]. Эти различия в значениях (2-3)- и (0-3)-переходов в работах [38, 7, 40] указывают на необходимость изменения отнесения

(0-3)-перехода работы [38]. Как видно из табл. 3 работы [38], в колебательной структуре спектра поглощения, полученного методом CRDS, есть полосы 26592 см⁻¹, 26834 см⁻¹ и 27064 см⁻¹, отстоящие от 0-0-полосы на значения +731, +973 и +1203 см⁻¹. Эти значения близки к величинам (0-3), (0-4)-, (0-5)-переходов крутильного колебания, полученным из ТД от 0-0-полосы s-mpancизомера акролеина в электронном состоянии S₁ работы [7], которые совпадают с квантово-механически рассчитанными в работе [40] (табл. 12). Следовательно, в табл. 3 работы [38] необходимо сделать переотнесение полос 26592, 26834, 27064 см⁻¹ и отнести их к переходам 18 (3.0), 18 (4.0), 18 (5.0). Эти полосы относятся к «холодным», как и должно быть при переходе из основного состояния. По симметрии они также соответствуют переходам (0-3), (0-4) и (0-5). Кроме того, нами найдены переходы 18 (3.1), 18 (4.1), 18 (5.2) [39]. После переотнесения шести полос поглощения табл. 3 работы [38] была построена более полная таблица Деландра (табл. 4 работы [39]). При обсчете этой ТД по программе v₀₀ получили значения (0-v')-переходов, близкие к значениям аналогичных переходов работы [7] и к расчетным значениям соответствующих переходов v'-(v' + 1) работы [40] (табл. 12). Рассчитанные по программе v₀₀ значения всех переходов приведены в скобках в табл. 12. Таким образом, исправление ошибочного отнесения (0-3), (0-4), (0-5) переходов, нахождение некоторых других переходов18 (3.1), 18 (4.1), 18 (5.2) крутильного колебания в спектре поглощения, полученного методом CRDS в работе [38] и по-

Таблица 12

0-v-переход	[7]	[38]	v-(v+1)- переход	[7]	[38]	[40]***
0-1	248,9	251 (246,5)*	0-1	248,9	251 (246,5)**	244,6
0-2	491,5	491 (490,0)	1-2	242,6	240 (243,5)	241,4
0-3	729,6	718 (730,1)	2-3	238,1	227 (240,1)	238,2
0-4	964,6	(967,0)	3-4	235,0	(236,9)	235,0
0-5	1198,2	(1200,7)	4-5	233,6	(233,7)	_

Частоты переходов крутильного колебания s-*mpaнc*-изомера акролеина в возбужденном (S₁) электронном состоянии, полученные из ТД-УФ-спектра и ТД-спектра метода CRDS (см⁻¹)

* В скобках-значения (0-v)-переходов крутильного колебания, полученные из построенной в работе [39] ТД.

** В скобках указаны значения v-(v+1)-переходов крутильного колебания, полученные из построенной в работе [39] ТД.

*** Кквантово-механический расчет v-(v+1)-переходов крутильного колебания методом CASSCF в базисе cc-pVDZ.

строение более информативной ТД [39] привело к новому определению частот переходов крутильного колебания s-mpanc-изомера в электронном состоянии S₁ (табл. 12). Как видно из табл. 2 работы [39], мы сделали переотнесение некоторых полос поглощения при построении таблиц Деландра от фундаментальных частот и их обертонов. Однако чаще всего отнесение полос поглощения акролеина в этих двух методах совпадает. Близость значений 0-0-полос, фундаментальных частот, в том числе частот крутильного колебания и значений некоторых (0-v)переходов этого колебания, показывает, что в обоих методах получают для S1-состояния надежные экспериментальные спектры [7, 38]. Однако построение ТД и определение из них значений (0-v)-переходов крутильного колебания для s-mpaнc-изомера делает более надежным отнесение в применяемом нами методе. Поэтому можно сделать вывод, что метод анализа колебательной структуры *n*-*π**-перехода УФ-спектров поглощения высокого разрешения паров исследуемых соединений из-за многократного повторения значений одинаковых (0-v)-переходов крутильного колебания s-mpanc-изомера в ТД и совпадения значений квантово-механического расчета для одинаковых переходов этого изомера [40] с экспериментальными обеспечивает большую надежность и точность значений этих переходов в S₁-состоянии. Кроме того, преимущество метода анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектров поглощения по сравнению с методом CRDS заключается в том,

СПИСОК ЛИТЕРАТУРЫ

- 1. Марголин Л.Н., Пентин Ю.А., Тюлин В.И. // Вестн. Моск. ун-та. Сер. 2. Химия. 1976. Т. 17. № 2. С. 146.
- 2. Глебова Л.А., Марголин Л.Н., Пентин Ю.А., Тюлин В.И. // Журн. структ. хим. 1976. Т. 17. № 4. С. 703.
- Глебова Л.А., Пентин Ю.А., Тюлин В.И. // Вестн. Моск. ун-та. Сер. 2. Химия. 1979. Т. 20. № 1. С. 23.
- 4. Глебова Л.А., Абраменков А.В., Марголин Л.Н., Зенкин А.А., Пентин Ю.А., Тюлин В.И. // Журн. структ. хим. 1979. Т. 20. № 6. С. 1030.
- 5. Марголин Л.Н. // Автореф. дис. ... канд. хим. наук. М., 1975.
- 6. Глебова Л.А. // Автореф. дис. ... канд. хим. наук. М., 1981.
- 7. Тюлин В.И., Матвеев В.К. // ЖФХ. 1999. Т. 73. № 1. С. 92.
- 8. Королева Л.А., Тюлин В.И., Иванникова В.В., Матвеев

что он позволяет определять в S_1 -состоянии значения (0-v)-переходов крутильного колебания второго s-*цис*-изомера. Надежность и точность значений этих переходов s-*цис*-изомера до высокого значения квантового числа подтверждается также многократным их повторением в разных ТД. Значения (0-v)-переходов крутильного колебания до высокого квантового числа v получены нами впервые в S_1 -состоянии для обеих изомерных форм всех перечисленных выше соединений [7–9, 23, 24, 27, 28].

Изучение внутреннего вращения для отдельных классов соединений важно с точки зрения выявления закономерностей в изменении параметров V_n ПФВВ, барьеров (H^{\neq}) внутреннего вращения, разности энергии (ΔH) изомеров в зависимости от заместителя и его местоположения. Это перспективно в плане предсказания параметров $V_n \Pi \Phi BB, H^{\neq}$ внутреннего вращения и ΔH изомеров для еще неисследованных соединений данного класса соединений. Особенно это важно, когда экспериментально спектр получить трудно (для высококипящих соединений с низким давлением паров и для соединений с большой величиной разности энергии). Метод анализа колебательной структуры $n-\pi^*$ -перехода УФ-спектров поглощения высокого разрешения в газовой фазе для исследуемых нами классов соединений самый перспективный. Для других классов соединений с большим квантовым выходом, чем у исследуемых нами соединений, возможно применение также спектров возбуждения флуоресценции.

В.К., Пентин Ю.А. // ЖФХ. 2006. Т. 80. № 2. С. 296.

- Koroleva L.A, Tyulin V.I., Matveev V.K., Pentin Y.A. // Spectrochim. Acta Part A: Molec. and Biomolec. Spectroscopy. 2014. Vol. 122A. P. 609.
- Koroleva L.A, Abramenkov A.V., Krasnoshchekov S.V., Korolyova A.V., Bochenkova A.V. // J. Mol. Struct. 2019. Vol. 1181. P. 228.
- Орвилл-Томас В.Д. Внутреннее вращение молекул. М., 1977.
- 12. Cherniak E.A., Costain C.C. // J. Chem. Phys. 1966. Vol. 45. P. 104.
- 13. Blom C.E., Bauder A. // Chem. Phys. 1982. Vol. 88. P. 55.
- Blom C.E., Grassi K., Bauder A. // J. Amer. Chem. Soc. 1984. Vol. 106. P. 7427.
- 15. Alves A.C.P., Christoffevrsen A., Hollas J.M. // Mol. Phys. 1971. Vol. 20. P. 625.
- Suzuki M., Kozima K. // J. Mol. Spectrosc. 1971. Vol. 38. P. 314.

- Durig J.R., Qiu J., Dehoff B., Little T.S. // Spectr. Acta. 1986. Vol. 42A. N 2. P. 89.
- Keirns J.J., Curl R. F. // J. Chem. Phys. 1968. Vol. 48. N 8. P. 3773.
- Латыпова Р.Г, Мамлеев А.Х., Гундерова Л.Н., Поздеев М.Н. // Журн. структ. хим. 1976. Т. 17. № 5. С. 849.
- 20. Kewiey R.C., Hemphill D.C., Curl D.S. // J. Mol. Spectrosc. 1972. Vol. 44. P. 443.
- 21. Durig J.R., Wang A-Y., Little T.S. // J. Chem. Phys. 1989. Vol. 91. N 12. P. 7361.
- 22. Katon J.E., Feairneller H.N. // J. Chem. Phys. 1967. Vol. 47. N 4. P. 443.
- 23. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // ЖФХ. 2009. Т. 83. № 6. С. 1090.
- 24. Королева Л.А., Матвеев В.К., Королева А.В., Пентин Ю.А. // ЖФХ. 2018. Т. 92. № 3. С. 415.
- 25. Герцберг Г. Электронные спектры и строение многоатомных молекул. М., 1969. С. 149.
- 26. Durig J.R, Li J.S. // Mol. Phys. 1997. Vol. 91. P. 421.
- 27. Королева Л.А., Андриасов К.С., Королева А.В. // Вестн. Моск. ун-та. Сер. 2. Химия. 2021. Т. 62. № 6. С. 481.
- 28. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // ЖФХ. 2015. Т. 89. № 7. С. 1138.

- 29. Durig J.R., Brletic P.A., Li Y.S., Wang A.Y., Little T.S. // J. Mol. Struct. 1990. Vol. 223. P. 291.
- 30. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // ЖФХ. 2011. Т. 85. № 3. С. 500.
- 31. Королева Л.А., Тюлин В.И., Матвеев В.К., Краснощеков С.В. // ЖФХ. 2009. Т. 83. № 6. С. 1098.
- 32. Абраменков А.В. // ЖФХ. 1995. Т. 69. С. 5851.
- 33. Durig J.R., Brletic P.A., Church J.S. // J. Chem. Phys. 1982. Vol. 76. P. 1723.
- Laskovski B.C., Jaffe R.I., Komornicki A. // J. Chem. Phys. 1985. Vol. 82. N 11. P. 5089.
- 35. Durig J.R., Church J.S., Compton D.A.C. // J. Chem. Phys . 1979. Vol. 71. N 3. P. 1175.
- Durig J.R, Li Y., Jin Y. // J. Chem. Phys. 1996. Vol. 213. P. 181.
- 37. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // ЖФХ. 2007. Т. 81. № 1. С. 40.
- Paulisse K.W., Friday T.O., Graske M.L., Polik W.F. // J. Chem. Phys. 2000. Vol. 113. N 1. P. 184.
- 39. Королева Л.А., Тюлин В.И., Матвеев В.К., Пентин Ю.А. // ЖФХ. 2012. Т. 86. № 4. С. 679.
- Bokareva O.S., Bataev V.A., Pupyshev V.I., Godunov I.A. // Internat. J. Quantum. Chem. 2008. Vol. 108. N 14. P. 2719.

Информация об авторах

Королева Лидия Александровна – ст. науч. сотр. лаборатории молекулярной спектроскопии кафедры физической химии химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (koroleva.msu@rambler.ru);

Королева Александра Валерьевна – ст. науч. сотр. кафедры общей физики и молекулярной электроники физического факультета МГУ имени М.В. Ломоносова, канд. физ.-мат. наук (koroleva.phys@mail.ru).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 17.01.2023; одобрена после рецензирования 17.02.2023; принята к публикации 20.02.2023.